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FDTD discretization
In finite-difference time-domain (FDTD), the discretization of the spatial do-
main is driven by the mesh definition. The mesh or grid is comprised of grid
cells, with the size of these cells establishing the simulation′s spatial resolution.
The conventional grid cell dimensions in FDTD varies from 𝜆/10 to 𝜆/20, where
𝜆 is the smallest wavelength in the simulation source. It is possible for a coarse
mesh using the Yee grid to introduce a nonphysical numerical dispersion, which
results in the simulated wave travelling with a slower phase velocity. While it
is important to note that structures often have fine features or curved surfaces
that may require a finer mesh, this article will focus on the simulation resolution
relative to the source wavelength.
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Numerical dispersion
Solving Maxwell′s equations using the Yee grid [1] results in a discrepancy be-
tween the analytical and simulated solutions. In this regard, the phase velocity
of the numerical wave deviates slightly from its true value depending on the
frequency, grid resolution, and the direction of the propagating wave. To com-
pare the analytic and simulated phase velocities, one must first compute the
wavevector (𝑘), which is related to the phase velocity as

𝑣𝑝 = 𝜔
𝑘 (1)

where 𝜔 is the angular frequency.

Analytical Dispersion Equation

For the comparison of the analytical and simulation results this article will con-
sider a propagating monochromatic planewave in freespace. In the 2D domain,
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this planewave (𝐸𝑦 = 𝐸𝑦0
𝑒𝑗(𝜔𝑡−𝑘𝑥𝑥−𝑘𝑧𝑧)) along with Maxwell′s equations yields

the analytic dispersion equation[1-2]

𝑘2
𝑥 + 𝑘2

𝑧 = (𝜔
𝑐 )

2
(2)

where 𝑐 represent the speed of light and the analytical wavevector components
along x and z are defined as 𝑘𝑥 and 𝑘𝑧, respectively.

Numerical Dispersion Equation

For the simulated case, Maxwell′s equations need to be expressed in their dis-
cretized form. The source free expressions for the TE polarization (i.e. Hx, Hz,
Ey) are written as [1-2]

𝜕𝐸𝑦
𝜕𝑡 = 1

𝜀0
(𝜕𝐻𝑥

𝜕𝑧 − 𝜕𝐻𝑧
𝜕𝑥 ) (3)

𝜕𝐻𝑥
𝜕𝑡 = 1

𝜇0
(𝜕𝐸𝑦

𝜕𝑧 ) (4)

𝜕𝐻𝑧
𝜕𝑡 = 1

𝜇0
(−𝜕𝐸𝑦

𝜕𝑥 ) (5)

Discretizing the partial derivatives in the above equations is achieved through
the use of the Yee cell [1-2] and yields

𝐸𝑛+1
𝑦 (𝑖, 𝑘) = 𝐸𝑛

𝑦 (𝑖, 𝑘) + Δ𝑡
𝜀0 Δ𝑧 [𝐻𝑛+0.5

𝑥 (𝑖, 𝑘) − 𝐻𝑛+0.5
𝑥 (𝑖, 𝑘 − 1)]

− Δ𝑡
𝜀0 Δ𝑥 [𝐻𝑛+0.5

𝑧 (𝑖, 𝑘) − 𝐻𝑛+0.5
𝑧 (𝑖 − 1, 𝑘)] (6)

𝐻𝑛+0.5
𝑥 (𝑖, 𝑘) = 𝐻𝑛−0.5

𝑥 (𝑖, 𝑘) + Δ𝑡
𝜇0 Δ𝑧 [𝐸𝑛

𝑦 (𝑖, 𝑘 + 1) − 𝐸𝑛
𝑦 (𝑖, 𝑘)] (7)

𝐻𝑛+0.5
𝑧 (𝑖, 𝑘) = 𝐻𝑛−0.5

𝑧 (𝑖, 𝑘) − Δ𝑡
𝜇0 Δ𝑥 [𝐸𝑛

𝑦 (𝑖 + 1, 𝑘) − 𝐸𝑛
𝑦 (𝑖, 𝑘)] (8)

where the discretized field components are written as [2]

𝐸𝑦 ∣𝑛𝐼,𝐾 = 𝐸𝑦0
𝑒𝑗(𝜔𝑛Δ𝑡−�̃�𝑥𝐼Δ𝑥−�̃�𝑧𝐾Δ𝑧) (9)

𝐻𝑥 ∣𝑛𝐼,𝐾 = 𝐻𝑥0
𝑒𝑗(𝜔𝑛Δ𝑡−�̃�𝑥𝐼Δ𝑥−�̃�𝑧𝐾Δ𝑧) (10)

𝐻𝑧 ∣𝑛𝐼,𝐾 = 𝐻𝑧0
𝑒𝑗(𝜔𝑛Δ𝑡−�̃�𝑥𝐼Δ𝑥−�̃�𝑧𝐾Δ𝑧) (11)

where �̃�𝑥 and �̃�𝑧 are numerical wavevectors in x and z direction. The indices I
and K denote the spatial indices in the x and z directions, respectively. Inserting
the discretized fields into the discretized Maxwell′s equations leads to

[( 1
𝑐Δ𝑡) sin (𝜔Δ𝑡

2 )]
2

= [ 1
Δ𝑥 sin (

̃𝑘𝑥Δ𝑥
2 )]

2

+ [ 1
Δ𝑧 sin (

̃𝑘𝑧Δ𝑧
2 )]

2

(12)
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It can be shown that the discretized dispersion equation (12) simplifies to the
analytical expression (2) for a square grid (Δ𝑥 = Δ𝑧 = Δ) under the limit that
Δ− > 0 and using the Courant stability criteria (Δ𝑡 = Δ√

2𝑐 ).

Numerical Dispersion Relative to Frequency and Resolution

To explore the deviation between analytical and discretized dispersion equations
relative to frequency and resolution it is easier to reduce the problem to 1D
(𝑘𝑧 = 0) . This action modifies the analytical (1) and discretized (12) equations
to be

𝜔Δ𝑥
𝑐 = |𝑘𝑥Δ𝑥| analytical (13)

𝜔Δ𝑥
𝑐 = ∣ 2

𝑆 𝑠𝑖𝑛−1 (𝑆 ⋅ 𝑠𝑖𝑛 (𝑘𝑥Δ𝑥
2 ))∣ discretized (14)

where 𝑆 = 𝑐Δ𝑡
Δ𝑥 . Note that the analytical expression has been normalized by Δ𝑥

for the purpose of comparison. Plotting both of these expressions demonstrates
a number of trends in how the discretized dispersion equation deviates from the
analytical one, see figure 1.

Figure 1: The analytical and discretized dispersion curves demonstrating nu-
merical dispersion.

The observations that can be made are that the deviation:
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1. proportional to the frequency.
2. proportional to the size of the grid cells (inversely proportional to the

number of points per wavelength).
3. inversely proportional to the ratio of Δ𝑡 to Δ𝑥, i.e. 𝑆. Note that while S

= 1 would match the analytical and discretized results this is at the edge
of numerical stability and as such is not advisable.

Numerical Dispersion Relative to Propagation Direction

To explore numerical dispersion relative to propagation direction the analytical
and discretized expressions can be rewritten relative to a general wavevector 𝑘
such that

𝑘𝑥 = 𝑘𝑐𝑜𝑠𝜙 (15)
𝑘𝑧 = 𝑘𝑠𝑖𝑛𝜙 (16)

With this identity the analytical expression (2) becomes

(𝜔Δ𝑥
𝑐 )

2
= 𝑘2(𝑐𝑜𝑠2𝜙 + 𝑠𝑖𝑛2𝜙) (17)

(𝜔Δ𝑥
𝑐 )

2
= 𝑘2 (18)

and similarly the discretized expression (12), on a square grid, becomes

( Δ
𝑐Δ𝑡)

2
𝑠𝑖𝑛2 (𝜔Δ𝑡

2 ) = 𝑠𝑖𝑛2 (�̃�Δ𝑐𝑜𝑠𝜙
2 ) + 𝑠𝑖𝑛2 (�̃�Δ𝑠𝑖𝑛𝜙

2 ) (19)

Solving (19) with respect to �̃� requires the use of Newton’s method on the
following expression

𝑓 (�̃�) = sin2 (�̃�Δ cos 𝜑
2 )+sin2 (�̃�Δ sin 𝜑

2 )−( Δ
𝑐Δ𝑡)

2
sin2 (𝜋𝑐Δ𝑡

𝜆0
) = 0 (20)

The algorithm [2] is given as

�̃�𝑛+1 = �̃�𝑛 −
𝑓 (�̃�)
𝑓 ′ (�̃�)

= �̃�𝑛 −
sin2 (𝐶1�̃�𝑛) + sin2 (𝐶2�̃�𝑛) − 𝐶3

𝐶1 sin (2𝐶1�̃�𝑛) + 𝐶2 sin (2𝐶2�̃�𝑛)
(21)

where 𝑓 ′ represents the first derivative of the function 𝑓 and

𝐶1 = Δ cos 𝜑
2 (22)

𝐶2 = Δ sin 𝜑
2 (23)

𝐶3 = ( Δ
𝑐Δ𝑡)

2
sin2 (𝜋𝑐Δ𝑡

𝜆0
) (24)
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The numerical phase velocity ̃𝑣𝑝 = 𝜔
�̃� can now be calculated from (1). Figure 2

shows the normalized numerical phase velocity versus the angle of propagation,
𝜑, for three cases i.e. when the number of grid cells per wavelength are 4, 8, and
16. In all plots the time step is set as 𝑆 = 𝑐Δ𝑡

Δ = 1√
2 . As can be seen from the

results, the numerical phase velocity is lower than its true value, c (shown by
the dashed line), and that the deviation between the analytical and discretized
results can be minimized by increasing the number of grid cells.

Figure 2: The normalized numerical phase velocity versus the angle 𝜙.
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