Contents

Α	perfect absorber using an all-dielectric metasurface	1
	Labels	1
	Design	1
	Results	4
	References	5

A perfect absorber using an all-dielectric metasurface

Metasurfaces, which may modify the amplitude, phase, and polarisation of incident light, are the two-dimensional counterpart of bulk metamaterials. They are optically tiny scatterers (known as meta-atoms) arranged in periodic or aperiodic two-dimensional (2D) configurations that are typically seen on a thin substrate (around a few hundred micrometer).

In this article, OptiFDTD is used to model an all-dielectric metasurface composed of crystalline silicon (c - Si) meta-atoms on a silica (SiO_2) substrate to exhibit perfect absorption at a specified wavelength (0.46 μ m) as reported in [1].

Labels

Dielectric metasurface; Metasurface; Metamaterial; Periodic structure; Perfect absorber; Reflection; Transmission; Journal confirmation.

Design

The 3D design of the metasurface is modelled by a unit cell consisting of one meta-atom. The meta-atom is an elliptic cylinder with major, minor axis and thickness equal to 0.190 μ m, 0.176 μ m and 0.108 μ m, respectively. The periodicity of the metasurface is 0.280 μ m along the x and y axes. Figure 1 shows the 3D editor image (left) and the schematic (right) of the unit cell with corresponding dimensions. Figure 2 shows the structure in the OptiFDTD layout view.

The wafer dimensions in the simulation region are chosen as length = 1 μ m and width = 0.28 μ m. The boundary conditions at z = 0. μ m and z = 1.0 μ m are chosen as absorbing perfectly matched layer (APML), while the boundary conditions in x and y directions are periodic boundary condition (PBC) positioned at x (y) = -0.140 μ m and x (y) = 0.140 μ m. The substrate is created using a linear waveguide set to a channel waveguide profile (WG_channel_example) from z = 0.5 to 1.0 μ m. The elliptic cylinder is a linear waveguide set to a fiber profile (WG_fiber_example) with Rx = 0.095 μ m and Ry = 0.088 μ m.

The optical source was configured using the input plane (positioned at $z = 0.3 \mu m$) with a rectangular distribution, see table 1 for further details.

Table 1: Details of the optical source employed in the simulation

Optical source features	Value
Wavelength (μm)	0.60
Half Width (μm)	0.28
Polarization	X
Time domain shape	Sine-Modulated Gaussian Pulse

The absorption (A) is calculated through observation areas recording the reflection (R) and transmission (T) and

$$A = 1 - R - T. \tag{1}$$

The observation areas (XY) used were located at $z = 0.2 \ \mu m$ and $z = 0.8 \ \mu m$ for reflection and transmission respectively.

The c-Si is represented as a dispersive material based on the experimental data taken from [2-3] shown in Figure 3. The material fit is achieved using a Lorentz-Drude material with 3 resonances shown in table 2.

Figure 1: The 3D editor image of the unit cell in OptiFDTD (left). The schematic of the unit cell with corresponding dimensions (right). $d_1 = 0.190$ μ m, $d_2 = 0.176 \ \mu$ m, $h = 0.108 \ \mu$ m and $p = 0.280 \ \mu$ m.

Figure 2: The layout for the simulation of the metasurface with the input plane (red line) and two XY observation areas for calculating reflection and transmission.

Table 2: Lorentz-Drude fit data for c-Si

Strength	Plasma Frequency (rad/s)	Resonant Frequency (rad/s)	Damping (rad/s)
7.140530	$\begin{array}{c} 7.057110\mathrm{e}{+15} \\ 5.280530\mathrm{e}{+15} \\ 4.557600\mathrm{e}{+14} \end{array}$	7.057110e+15	2.643950e+12
3.702920		5.280530e+15	3.106500e+14
1.000000		0.000000e+00	1.102740e+11

Figure 3: The n and k terms the refractive index for both the experimental data taken from [2-3] as well as the fit shown as the hollow circles.

After convergence testing, the spatial mesh parameters (Δx , Δy and Δz) were chosen as 1.5 nm. Testing also confirmed that 35e3 time-steps are required for accurate results.

Results

The normalized reflection and transmission spectra obtained from the simulation of the metasurface are shown in Fig. 4. At 0.467 μ m, it can be observed that both the transmission and reflection vanish and perfect absorption (A = 1) is achieved. Physically, it is originated by the interference of induced electric and magnetic quadrupoles inside the mata-atoms around $\lambda = 0.46 \ \mu$ m [1].

Figure 4: The absorption, reflection, and transmission spectra for the metasurface illuminated by an x-polarized plane wave. The grey dashed line corresponds to 0.467 μ m, the wavelength at which perfect absorption occurs.

References

- Xu, Rongyang, and Junichi Takahara. "All-dielectric perfect absorber based on quadrupole modes." Optics Letters 46, no. 15, pp. 3596-3599, 2021.
- Aspnes, David E., and A. A. Studna. "Dielectric functions and optical parameters of si, ge, gap, gaas, gasb, inp, inas, and insb from 1.5 to 6.0 ev." Physical review B 27, no. 2, p. 985, 1983.
- 3. M. Polyanskiy. "Optical constants of Si (Silicon)." refractiveindex.info. https://refractiveindex.info/?shelf = main&book = Si&page = Aspnes (accessed Nov. 30, 2022).